
Synchronization

ECE 469, Mar 27

Aravind Machiry

1

Threads

● Separate the concepts of a “thread of control” (PC, SP,
registers) from the rest of the process (address space,
resources, accounting, etc.)

● Modern OSes support two entities:
● the task (process), which defines an address space, a resource

container, accounting info

● the thread (lightweight process), which defines a single
sequential execution stream within a task (process)

2

Programming with Threads

● Flexible, but error-prone, since there no protection
between threads
● In C/C++,

● automatic variables are private to each thread

● global variables and dynamically allocated memory (malloc) are shared

● Need synchronization!

3

The need for synchronization!

● Cooperating processes may share data via
● shared address space (code, data, heap) by using threads

● Files

● (Sending messages)

● What can happen if processes try to access shared data
(address) concurrently?
● Sharing bank account with sibling:

At 3pm: If (balance > $10) withdraw $10

● How hard is the solution?

4

“Too much milk” Problem

● How to put in a locking mechanism?

Person A Person B

1. Look in fridge: out of milk
2. Leave for Walmart
5. Arrive at Walmart
6. Buy milk
7. Arrive home

3. Look in fridge: out of milk
4. Leave for Walmart
8. Arrive at Walmart
9. Buy milk
10. Arrive home

5

Possible Solution 1

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

Person A Person B

6

Will this work?

● Process can get context switched after checking milk
and note, but before leaving note

3.if (noMilk) {
 4.if (noNote) {
 6.leave note;
 buy milk;
 remove note;
 }
}

1.if (noMilk) {
 2.if (noNote) {
 5.leave note;
 buy milk;
 remove note;
 }
}

Person A Person B

7

Possible Solution 2

leave noteA
if (no noteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

leave noteB
if (no noteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Person A Person B

8

Will this work?

leave noteA
if (no noteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

leave noteB
if (no noteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Person A Person B

● We may not have Milk: Both process can leave note and skip
buying milk

9

Possible Solution 3

Process A

leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Process B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

10

Works, but complicated!

Process A
leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Process B
leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

● A’s code is different from B’s

● busy waiting is a waste

11

How can we solve this?

● Root cause: Data Race

• A thread’s execution result could be inconsistent if other
threads intervene its execution…

• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

12

How can we prevent data races?

• What we need?
• Exclusive access to counter (shared

variable)

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

13

How can we prevent data races?

● Critical section – a section of code, or collection of
operations, in which only one process shall be
executing at a given time

● Mutual exclusion (Mutex) - mechanisms that ensure
that only one person or process is doing certain things
at one time (others are excluded)

14

How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

15

How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

16

Mutex Considerations

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread store the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of
having concurrency

• Non-critical sections will run concurrently!

17

Implementing Mutual exclusion

● Data races occur because of scheduler interleaving executing of
different threads

● How to avoid this? Prevent interleaving

18

Preventing Interleaving

•cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?

• counter += value
• cli
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• sti

19

Preventing Interleaving

•cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?

• Multi CPU?

• cli/sti available in Ring 0

• counter += value
• cli
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• sti

20

Mutual Exclusion through locks

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• unlock()

21

Mutual Exclusion through locks

• counter += value
• lock()
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• unlock()

• Lock
• Prevent others enter the critical section

• How?
• Check if any other execution in the critical section

• If it is, wait; busy-waiting with while()

• If not, acquire the lock!
• Others cannot get into the critical section

• Run critical section

• Unlock, let other execution know that I am out!

22

Mutex Example
Thread 1 Thread 2

23

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

24

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value

25

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

26

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!

27

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

28

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock()

29

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!

30

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = value

31

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = valueCritical Section

lock()

32

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = valueCritical Section

lock()

wait!

33

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = valueCritical Section

lock()

wait! eax = counter

eax = edx + eax

counter = eax

34

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = valueCritical Section

lock()

wait! eax = counter

eax = edx + eax

counter = eax

unlock()

35

Mutex Example
Thread 1 Thread 2

Critical Section

lock()

edx = value Critical Section

lock()

wait!eax = counter

eax = edx + eax

counter = eax

unlock() Run!
edx = valueCritical Section

lock()

wait! eax = counter

eax = edx + eax

counter = eax

unlock()
Run!

36

Mutex Example
Thread 1 Thread 2

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

wait!

Run!

wait!

Run!

37

Implementing lock

• Only one can run in critical section

• Others must wait!
• Until nobody runs in critical section

• How can we create such
• Lock() / Unlock() ?

Thread 1

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Thread 2

Critical Section

lock()

Thread 3

Critical Section

lock()

38

lock example

• https://github.com/purs3lab/ee469_examples/tree/master/lock_exa
mple

• Run 30 threads, each count upto 50

• Build code
• $ make

• Run code
• $./lock xchg # shows the result of using xchg lock

https://github.com/purs3lab/ee469_examples/tree/master/lock_example
https://github.com/purs3lab/ee469_examples/tree/master/lock_example

39

lock example

Main
thread

Child
thread

Child
thread

Child
thread

Child
thread

Child
thread

……
…..

30 threads

uint32_t count
0

pthread_create()

40

lock example

Main
thread

Child
thread

Child
thread

Child
thread

Child
thread

Child
thread

……
…..

uint32_t count
0

Each thread will increase count by 1 for 50 times

+1

30 threads

pthread_create()

41

lock example

Main
thread

Child
thread

Child
thread

Child
thread

Child
thread

Child
thread

……
…..

uint32_t count
1

Each thread will increase count by 1 for 50 times

+1

+1

30 threads

pthread_create()

42

lock example

Main
thread

Child
thread

Child
thread

Child
thread

Child
thread

Child
thread

……
…..

uint32_t count
2

Each thread will increase count by 1 for 50 times

+1

+1

+1

30 threads

pthread_create()

43

lock example

Main
thread

Child
thread

Child
thread

Child
thread

Child
thread

Child
thread

……
…..

uint32_t count
3

Each thread will increase count by 1 for 50 times

+1

+1

+1

30 threads

pthread_create()

44

lock example

• Running
• $./lock no # using no lock at all

• $./lock bad # using a bad lock implementation

• $./lock xchg # using xchg lock

• $./lock cmpxchg # using lock cmpxchg

• $./lock tts # using soft test-and-test & set with xchg

• $./lock backoff # using exponential backoff cmpxchg

• $./lock mutex # using pthread mutex

45

Manual Spinlock (bad_lock)

• Spinlock
• Run a loop to check if critical section is empty
• Set a lock variable, e.g., lock
• Lock semantic

• Nobody runs critical section if *lock == 0, so one can run the section
• At the start of the section, set *lock = 1

• Somebody runs in critical section if *lock == 1, so one must wait

• lock(lock)
• Wait until l becomes 0, e.g., while(*lock == 1);

• Then, nobody runs in the critical section!
• set *lock = 1

• unlock(lock)
• Set *lock = 0

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

while(*lock ==1)

*lock = 0

*lock = 1
Lock

Unlock

46

Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

47

Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Can pass this if lock=0

48

Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Can pass this if lock=0
Sets lock=1 to block others

49

Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Can pass this if lock=0
Sets lock=1 to block others

Critical
Section

50

Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Can pass this if lock=0
Sets lock=1 to block others

Critical
Section

Sets lock=0 to release

51

Why does bad_lock doesn’t work?

52

Why does bad_lock doesn’t work?

53

Why does bad_lock doesn’t work?

LOAD

STORE

54

Why does bad_lock doesn’t work?

Another thread might get
scheduled here.

LOAD

STORE

55

Why does bad_lock doesn’t work?

Another thread might get
scheduled here.

LOAD

STORE

• There is a room for race condition!

56

Why does bad_lock doesn’t work?

• There is a room for race condition!

Race condition may
happen

LOAD

STORE

57

Why does bad_lock doesn’t work?

• There is a room for race condition!

Race condition may
happen

LOAD

STORE

58

Recall: Why does this work for humans?

● Human can perform test (look for other person
& milk) and set (leave note) at the same time.

59

Atomic Test and Set

• We need a way to test
• if lock == 0

• And we would like to set
• lock = 1

• And do this atomically

• Hardware support is required
• xchg in x86 does this

• An atomic test-and-set operation

Not like these four
instructions…

60

xchg: Atomic Value Exchange in x86

•xchg [memory], %reg
• Exchange the content in [memory] with the value in %reg atomically

• E.g.,
• mov $1, %eax
• xchg $lock, %eax

• This will set %eax as the value in lock
• %eax will be 0 if lock==0, will be 1 if lock==1

• At the same time, this will set lock = 1 (the value was in %eax)

• CPU applies ‘lock’ at hardware level (cache/memory) to do this
• Hardware guarantees no data race when running xchg

61

xchg: Atomic Value Exchange in x86

•xchg [memory], %reg
• Exchange the content in [memory] with the value in %reg atomically

• E.g.,
• mov $1, %eax
• xchg $lock, %eax

• This will set %eax as the value in lock
• %eax will be 0 if lock==0, will be 1 if lock==1

• At the same time, this will set lock = 1 (the value was in %eax)

• CPU applies ‘lock’ at hardware level (cache/memory) to do this
• Hardware guarantees no data race when running xchg

Swap lock and eax atomically

62

xchg: Atomic Value Exchange in x86

• E.g.,
• mov $1, %eax
• xchg $lock, %eax

• This will set %eax as the value in lock
• %eax will be 0 if lock==0, will be 1 if lock==1

• How can we determine if a thread acquired the lock?
• if eax == 0

• This means the lock was 0, and after running xchg, lock will be 1 (eax was 1)
• We acquired the lock!!! (lock was 0 and now the lock is 1)

• if eax == 1
• This means the lock was 1, and after running xchg, lock will be 1
• We did not acquired the lock (it was 1)
• lock == 1 means some other thread acquired this…

Swap lock and eax atomically

63

Lock using xchg

• xchg_lock
• Use atomic ‘xchg’ instruction to
• Load and store values atomically
• Set value to 1, and compare ret

• If 0, then you can acquire the lock
• If 1, lock as 1, you must wait

• xchg_unlock
• Use atomic ‘xchg’
• Set value to 0

• Do not need to check
• You are the only thread that runs in the
• Critical section..

64

Lock using xchg

• xchg_lock
• Use atomic ‘xchg’ instruction to
• Load and store values atomically
• Set value to 1, and compare ret

• If 0, then you can acquire the lock
• If 1, lock as 1, you must wait

• xchg_unlock
• Use atomic ‘xchg’
• Set value to 0

• Do not need to check
• You are the only thread that runs in the
• Critical section..

Critical
Section

65

Does xchg_lock works?

• Yes!!

● Any issues?

66

Issues with xchg_lock

• xchg will always update the value
• If lock == 0

• lock = 1
• eax = 0

• If lock == 1
• lock = 1
• eax = 1

• We use while() to check the value in lock
• Will be cached into L1 cache of the CPU

• After updating a value in cache
• We need to invalidate the cache in other CPUs…

67

Issues with xchg_lock

• xchg will always update the value
• If lock == 0

• lock = 1
• eax = 0

• If lock == 1
• lock = 1
• eax = 1

• We use while() to check the value in lock
• Will be cached into L1 cache of the CPU

• After updating a value in cache
• We need to invalidate the cache in other CPUs…

Swap with eax == 1, update lock to 1

Swap with eax == 1, update lock to 1

68

No need to write when lock == 1

• Let’s not do that
• xchg can’t do that

69

No need to write when lock == 1

• Let’s not do that
• xchg can’t do that

• New method: Test and test-and-set
• Check the value first (if lock == 0) 🡨 TEST
• If it is,

• Do test-and-set

• Otherwise (if lock == 1),
• Do nothing

• DO NOT UPDATE lock if lock == 1 (No cache invalidate)

70

Lock using test and set

• tts_xchg_lock

• Algorithm
• Wait until lock becomes 0
• After lock == 0

• xchg (lock, 1)
• This only updates lock = 1 if lock was 0

• Why xchg, why not *lock = 1 directly?
• while and xchg are not atomic
• Load/Store must happen at

• The same time!

71

Lock using test and set

• tts_xchg_lock

• Algorithm
• Wait until lock becomes 0
• After lock == 0

• xchg (lock, 1)
• This only updates lock = 1 if lock was 0

• Why xchg, why not *lock = 1 directly?
• while and xchg are not atomic
• Load/Store must happen at

• The same time!

Critical
Section

72

Test and Set in x86

•cmpxchg [update-value], [memory]
• Compare the value in[memory] with %eax
• If matched, exchange value in [memory] with [update-value]
• Otherwise, do not perform exchange

• cmpxchg(lock, 0, 1)
• Arguments: Lock, test value, update value

• Returns old value of lock

Test

Test-and-set

73

Lock using cmpxchg_lock

• Cmpxchg_lock
• Use cmpxchg to set lock = 1

• Do not update if lock == 1

• Only write 1 to lock if lock == 0

• Xchg_unlock
• Use xchg_unlock to set lock = 0

• Because we have 1 writer and

• This always succeeds…

74

Lock using cmpxchg_lock

• Cmpxchg_lock
• Use cmpxchg to set lock = 1

• Do not update if lock == 1

• Only write 1 to lock if lock == 0

• Xchg_unlock
• Use xchg_unlock to set lock = 0

• Because we have 1 writer and

• This always succeeds…

Critical
Section

75

Reading fine print : x86 is too COMPLEX!

Cmpxchg designed to be Test and Test & Set instruction
However, Intel CPU gets too complex, so they decided to always update value regardless the result of
comparision

76

tts_xchg_lock v/s cmpxchg_lock

• tts_xchg_lock is faster then cmpxchg_lock

77

Not everything in hardware is fast!

78

Using hardware features smartly
• backoff_cmpxchg_lock(lock)

• Try cmpxchg
• If succeeded, acquire the lock.
• If failed

• Wait 1 cycle (pause) for 1st trial
• Wait 2 cycles for 2nd trial
• Wait 4 cycles for 3rd trial
• …
• Wait 65536 cycles for 17th trial..
• Wait 65536 cycles for 18th trial..

• https://en.wikipedia.org/wiki/Exponential_backoff

https://en.wikipedia.org/wiki/Exponential_backoff

79

Summary

• Mutex is implemented with Spinlock
• Waits until lock == 0 with a while loop (that’s why it’s called spin)

• Naïve code implementation never works
• Load/Store must be atomic

• xchg is a “test and set” atomic instruction
• Consistent, however, many cache misses, slow!

• Lock cmpxchg is a ”test and test&set” atomic instruction
• But Intel implemented this as xchg… slow!

• We can implement test-and-test-and-set (tts) with while + xchg
• Faster!

• We can also implement exponential backoff to reduce contention
• Much faster! Faster Than pthread_mutex

80

Other synchronization primitives
• We may want to have more than one thread/process to execute at

same time

Producer
 while (1) {

produce an item;

lock();
insert(item to pool);
unlock();

 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

81

How many producers/consumers can run at
a given time?

Producer
 while (1) {

produce an item;

lock();
insert(item to pool);
unlock();

 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

82

What we want!
• To be more efficient we want to be able to allow more than one

producer/consumer, i.e., equal to the number of items that can be
inserted into/removed from the pool

Producer
 while (1) {

produce an item;

lock();
insert(item to pool);
unlock();

 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

83

Semaphore

A semaphore is like an integer, with three differences:

When you create the semaphore, you can initialize its value to any integer, but after
that the only operations you are allowed to perform are increment (increase by
one) and decrement (decrease by one). You cannot read the current value of the
semaphore.

When a thread decrements the semaphore, if the result is negative, the thread
blocks itself and cannot continue until another thread increments the semaphore.

When a thread increments the semaphore, if there are other threads waiting, one
of the waiting threads gets unblocked.

84

Semaphore operations

wait(S) {
while (S<=0);

 S--;
}

signal(S) {
 S++;

}

85

Producers/consumers using Semaphores

Producer
 while (1) {

produce an item;

lock();
insert(item to pool);
unlock();

 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

Init: FULL = 0; EMPTY = N;

86

Producers/consumers using Semaphores

Producer
 while (1) {

produce an item;

lock();
insert(item to pool);
unlock();

 signal(FULL);
 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

Init: FULL = 0; EMPTY = N;

87

Producers/consumers using Semaphores

Producer
 while (1) {

produce an item;
 wait(EMPTY);

lock();
insert(item to pool);
unlock();

 signal(FULL);
 }

Consumer
 While (1) {

lock();
remove(item from pool);
unlock();

 consume the item;
}

Init: FULL = 0; EMPTY = N;

88

Producers/consumers using Semaphores

Producer
 while (1) {

produce an item;
 wait(EMPTY);

lock();
insert(item to pool);
unlock();

 signal(FULL);
 }

Consumer
 While (1) {

wait(FULL);
 lock();

remove(item from pool);
unlock();

 consume the item;
}

Init: FULL = 0; EMPTY = N;

89

Producers/consumers using Semaphores

Producer
 while (1) {

produce an item;
 wait(EMPTY);

lock();
insert(item to pool);
unlock();

 signal(FULL);
 }

Consumer
 While (1) {

wait(FULL);
 lock();

remove(item from pool);
unlock();

 signal(EMPTY);
 consume the item;
}

Init: FULL = 0; EMPTY = N;

90

Is Semaphore good for producers/consumers?

Need to know the size of buffer!

How to accommodate dynamic pool size?

