Synchronization

ECE 469, Mar 27

Aravind Machiry

Threads

o Separate the concepts of a “thread of control” (PC, SP,
registers) from the rest of the process (address space,
resources, accounting, etc.)

e Modern OSes support two entities:

the task (process), which defines an address space, a resource
container, accounting info

the thread (lightweight process), which defines a single
sequential execution stream within a task (process)

Programming with Threads

o Flexible, but error-prone, since there no protection
between threads
In C/C++,

automatic variables are private to each thread
global variables and dynamically allocated memory (malloc) are shared

e Need synchronization!

The need for synchronization!

o Cooperating processes may share data via

shared address space (code, data, heap) by using threads
Files

(Sending messages)

o What can happen if processes try to access shared data
(address) concurrently?

o Sharing bank account with sibling:
At 3pm: If (balance > $10) withdraw S10

o How hard is the solution?

“Too much milk” Problem

Person A Person B
1. Look in fridge: out of milk
2. Leave for Walmart 3. Look in fridge: out of milk
5. Arrive at Walmart 4. Leave for Walmart
6. Buy milk 8. Arrive at Walmart
7. Arrive home 9. Buy milk

10. Arrive home
e How to putin a locking mechanism?

Possible Solution 1

Person A

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

Person B

if (noMilk) {
if (noNote) {
leave note;

buy milk;
remove note;

232
Will this work? eco
[)
Person A Person B
1.if (noMilk) { 3.1f (noMilk) {
2.if (noNote) { 4.if (noNote) {
5.leave note:; 6.leave note;
buy milk; buy milk;
remove note; remove note;

} }

e Process can get context switched after checking milk
and note, but before leaving note

Possible Solution 2

Person A

leave noteA
if (no noteB) {
if (noMilk) {
buy milk
}
}

remove notelA

Person B

leave noteB
if (no noteA) {
if (noMilk) {
buy milk
}
}

remove noteB

Will this work?

Person A

leave noteA
if (no noteB) {
if (noMilk) {
buy milk
}
}

remove notelA

Person B

leave noteB
if (no noteA) {
if (noMilk) {
buy milk
}
}

remove noteB

o« We may not have Milk: Both process can leave note and skip

buying milk

Possible Solution 3

Process A

leave noteA
while (noteB)
do nothing;
if (noMilk)
buy milk;
remove noteA

Process B

leave noteB
if (noNoted) {
if (noMilk) {
buy milk
}
}

remove noteB

Works, but complicated!

Process A

leave notelA
while (noteB)
do nothing;

if (noMilk)

buy milk;
remove noteA

« A’s code is different from B’s
« busy waiting is a waste

Process B

leave noteB

if (noNoted) {
if (noMilk) {
buy milk
}
}

remove noteB

10

[N N)
. esco
How can we solve this? 3
[)
e Root cause: Data Race
* A thread’s execution result could be inconsistent if other
threads intervene its execution...
e counter += value
R _ . mov 0x20087b(%rip) ,%edx # 0x201010 <value>
edx value; mov 0x20087d(%rip) ,%eax # 0x201018 <counter>
* cax = counter; add %edx , %eax
ccax = edx + eax: mov %eax,0x200875(%rip) # 0x201018 <counter>

e counter = eax;

11

How can we prevent data races?

* What we need?

variable)

to counter (shared

| Thread 1 | Thread 2

edx = value
eax = counter
eax = edx + eax

counter = eax

edx = value

eax = counter

eax = edx + eax
|

counter = eax

12

How can we prevent data races?

o — a section of code, or collection of
operations, in which only one process shall be
executing at a given time

e Mutual exclusion (Mutex) - mechanisms that ensure
that only one person or process is doing certain things
at one time (others are excluded)

13

How can we prevent data races?

e Mutual Exclusion /

* Combine multiple instructions as a chunk
* Let only one chunk execution runs

* Block other executions

| Thread 1 |

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter
|

eax = edx + eax
|

counter = eax

14

How can we prevent data races?

e Mutual Exclusion /

* Combine multiple instructions as a chunk

* Let only one chunk execution runs
* Block other executions

Thread 1 I Thread 2 I

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Critical Section
edx = value

eax = counter
L

eax = edx + eax
|

counter = eax

15

Mutex Considerations

* Mutex can synchronize multiple threads and yield consistent result
* No read before previous thread store the shared data

* Making the entire program as critical section is meaningless
* Running time will be the same as single-threaded execution

* Apply critical section as short as possible to maximize benefit of
having concurrency

* Non-critical sections will run concurrently!

16

Implementing Mutual exclusion

o Data races occur because of scheduler interleaving executing of
different threads

o How to avoid this? Prevent interleaving

17

(N N J
(N N N J
- H T
Preventing Interleaving 22
(]
ecli, inasingle processor computer ’ countgr +=value
e Clear interrupt bit *cli
. . - , *edx = value;
* CPU will never get interrupt until it runs sti 3
. _ *eax = countery;
* Set interrupt bit ccax = edx + cax:
* counter = eax;
*sti

* There will be no other execution
* Any problems?

18

(X N J
(N N N J
m u OO O
Preventing Interleaving 22
(]
ecli, inasingle processor computer ’ counte_:r +=value
* Clear interrupt bit *cli
. . - , *edx = value;
* CPU will never get interrupt until it runs sti 3
) _ *eax = countery;
* Set interrupt bit ‘cax = edx + eax:
* counter = eax;
*sti

* There will be no other execution

* Any problems?
e Multi CPU?
e cli/sti availablein Ring0

19

(X N J
(X N N
= OO O
Mutual Exclusion through locks 3T
(]
e Lock * counter +=value
* Prevent others enter the critical section * lock()
e Unlock *edx = value;
. *eax = counter;
* Release the lock, let others acquire the lock
*ecax = edx + eax;
* counter = eax;

*unlock ()

20

| X X
[N N X J
- [X XN
Mutual Exclusion through locks 3
[)
e Lock * counter +=value
* Prevent others enter the critical section * lock()
* edx = value;
* cax = counter;
*How?
) *cax = edx + eax;
* Check if any other execution in the critical section
* counter = eax;

* [fitis, wait; busy-waiting with while()
If not, acquire the lock!

* Others cannot get into the critical section
Run critical section

Unlock, let other execution know that | am out!

*unlock ()

21

22

Q9
Q.
&
©
>

LLl
>
Q

i
-

=

Mutex Example

Thread 1

ritical Section

lock()

Thread 2

23

Mutex Example

Thread 1

lock()

edx = value

Thread 2

24

Mutex Example

Thread 1

lock()

edx = value

Thread 2

Critical Section

25

Mutex Example

Thread 1

lock()

edx = value

CX)
Thread 2 oo
® ® ®
X
®
Critical Section
wait!

26

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

CX)
Thread 2 oo
® ® ®
X
®
Critical Section
wait!

27

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Thread 2

Critical Section

wait!

28

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Thread 2

Critical Section

wait!

Run!

29

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Thread 2

Critical Section

wait!

Run!

30

® e
Thread 1 Thread 2 o e
®® o
Mutex Example +
lock() ®
edx = value Critical Section
eax = counter wait!
eax = edx + eax
counter = eax :
unlock() Run!

Critical Section ed alue

31

® e
Thread 1 Thread 2 o e
®® o
Mutex Example +
lock() ®
edx = value Critical Section
eax = counter wait!
eax = edx + eax
counter = eax :
unlock() Run!

Critical Section ed alue
wait!

32

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Critical Section
wait!

CX)
Thread 2 oo
®® o
® e
®
Critical Section
wait!
O
Run!

33

Mutex Example

Thread 1

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Critical Section
wait!

CX)
Thread 2 oo
®® o
® e
®
Critical Section
wait!
O
Run!

34

Mutex Example

Thread 1

ritical Section

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Critical Section
wait!

Run!

CX)
Thread 2 oo
®® o
® e
®
Critical Section
wait!
O
Run!

35

Mutex Example

Thread 1

ritical Section

lock()

edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

Critical Section
wait!

lock()

Run!
edx = value

eax = counter

eax = edx + eax
counter = eax

unlock()

CX)
Thread 2 oo
®® o
® e
®
Critical Section
wait!
O
Run!

36

Implementing lock

*Only one can run in critical section [Thread2 | [Threads |

Critical Section Critical Section

lock()

* Others must wait! edx = value

* Until nobody runs in critical section |l
eax = edx + eax

counter = eax

unlock()

* How can we create such
* Lock() / Unlock() ?

37

lock example

* Run 30 threads, each count upto 50

* Build code
* S make

* Run code
* S ./lock xchg # shows the result of using xchg lock

38

https://github.com/purs3lab/ee469_examples/tree/master/lock_example
https://github.com/purs3lab/ee469_examples/tree/master/lock_example

lock example

uint32 tcount
0

¢

pthread_create()

:

% Main
thr

:

Child Child Child Child Child
thread thread thread thread thread
30 threads

39

lock example

Main

uint32 tcount g
thr

thread_create()

§§

:

Child Child Child Child Child
thread thread thread thread thread
30 threads

Each thread will increase count by 1 for 50 times

40

lock example

uint32 tcount

thread_create

:

:

:

Main
thr

:

Child Child Child Child Child
thread thread thread thread thread
30 threads

Each thread will increase count by 1 for 50 times

41

lock example

uint32 tcount +1
2 Main

dthread_create + threae
+1

:

Child Child Child Child Child
thread thread thread thread thread
30 threads

Each thread will increase count by 1 for 50 times

42

lock example

uint32 tcount +1
3 Main

dthread_create + threae
+1

:

Child Child Child Child Child
thread thread thread thread thread
30 threads

Each thread will increase count by 1 for 50 times

43

lock example

* Running
e S ./lock no
S ./lock bad
S ./lock xchg
* S ./lock cmpxchg
S ./lock tts
* S ./lock backoff
* S ./lock mutex

using no lock at all

using a bad lock implementation

using xchg lock

using lock cmpxchg

using soft test-and-test & set with xchg
using exponential backoff cmpxchg
using pthread mutex

44

Manual Spinlock (bad_lock)

void

bad lock(volatile uint32_t *lock) {
while (*lock == 1);
* Spinlock *lock = 1;
* Run a loop to check if critical section is empty
» Set a lock variable, e.g., 1ock

* Lock semantic
* Nobody runs critical section if *1ock == 0, so one can run the section
* At the start of the section, set *1ock=1

* Somebody runs in critical section if *1ock == 1, so one must wait Critical Section
while (*lock ==1)
* lock(1ock) | rock
* Wait until | becomes 0, e.g., while (*lock == 1);
* Then, nobody runs in the critical section! edx = value
* set*lock =1 eax = counter

* unlock(lock)
* Set *lock =0

eax = edx + eax

counter = eax

Unlock *lock = 0

Manual Spinlock (bad_lock)

count_bad lock(void *args) {

. . . for (int i=0; i < N_COUNT; ++i) {
* What will happen if we implement lock pad_ Lock(&1ock) ;
* As bad_lock / bad_lock? sched_yield();
count += 1;
bad_unlock(&lock);
*bad _lock
* Wait until lock becomes 0 (loops if 1)
* And then, set lock as 1 void
* Because itwas 0, we cansetitas1 bad lock(volatile uint32_t *lock) {
. " while (*lock == 1);
Others must wait! *lock = 1
}
*bad _unlock void
e Just set *lock as 0 bad_unlock(volatile uint32_t *lock) {

*lock = 0;

}

Manual Spinlock (bad_lock)

count_bad lock(void *args) {

. : . for (int i=0; i < N_COUNT; ++i) {
* What will happen if we implement lock bad lock (&Lock)
* As bad_lock / bad_lock? sched_yield();
count += 1;
bad _unlock(&lock);
*bad _lock
* Wait until lock becomes 0 (loops if 1)
* And then, set lock as 1 void
* Because itwas 0, we cansetitas1 bad lock(volatile uint32_t *lock) {
« Others must wait! Can pass this if lock=0 while (*lock == 1);
*lock = 1;
}
*bad_unlock s
e Just set *lock as 0 bad_unlock(volatile uint32_t *lock) {

*lock = 0;

}

Manual Spinlock (bad_lock)

count_bad lock(void *args) {

. . . . for (int i=0; i < N_COUNT; ++i) {
What will happen if we implement lock bad lock (&Lock)
* As bad_lock / bad_lock? sched_yield();
count += 1;
bad _unlock(&lock);
*bad _lock
* Wait until lock becomes 0 (loops if 1)
* And then, set lock as 1 void
* Because itwas 0, we cansetitas1 bad lock(volatile uint32_t *lock) {
« Others must wait! Can pass this if lock=0 while (*lock == 1);
Sets lock=1 to block others ; *lock = 1;
*bad_unlock s
e Just set *lock as 0 bad_unlock(volatile uint32_t *lock) {

*lock = 0;

}

Manual Spinlock (bad_lock)

count_bad lock(void *args) {

. . . . for (int i=0; i < N_COUNT; ++i) {
What will happen if we implement lock pad lock (&Lock)
* As bad_lock / bad_lock? sched_yield();
' count += 1;
bad_unlock(&lock);

*bad _lock

* Wait until lock becomes 0 (loops if 1)

* And then, set lock as 1 void

* Because itwas 0, we cansetitas1 bad lock(volatile uint32_t *lock) {
« Others must wait! Can pass this if lock=0 while (*lock == 1);
Sets lock=1 to block others ; *lock = 1;

*bad_unlock s

e Just set *lock as 0 bad_unlock(volatile uint32_t *lock) {

*lock = 0;

}

Manual Spinlock (bad_lock)

count_bad lock(void *args) {

. . . . for (int i=0; i < N_COUNT; ++i) {
What will happen if we implement lock pad lock (&Lock)
* As bad_lock / bad_lock? sched_yield();
' count += 1;
bad_unlock(&lock);

*bad _lock

* Wait until lock becomes 0 (loops if 1)

* And then, set lock as 1 void

* Because itwas 0, we cansetitas1 bad lock(volatile uint32_t *lock) {
« Others must wait! Can pass this if lock=0 while (*lock == 1);
Sets lock=1 to block others ; *lock = 1;

*bad_unlock s

e Just set *lock as 0 bad_unlock(volatile uint32_t *lock) {

Sets lock=0 to release *lock = 0;

}

Why does bad _lock doesn’t work?

void
bad lock(volatile uint32_t *lock) {

while (*lock == 1);
*lock = 1;

}

51

Why does bad _lock doesn’t work?

void
bad lock(volatile uint32_t *lock) {
while (*lock == 1);

(%srdi) , %eax
$0x1, %eax
*lock = 1;

0x400b60 <bad lock>
$0x1, (%rdi)

52

Why does bad _lock doesn’t work?

void
bad lock(volatile uint32_t *lock) {
while (*lock == 1);

LOAD (%srdi) , %eax
$0x1, %eax
*lock = 1;

0x400b60 <bad lock>
STORE $0x1, (%rdi)

53

Why does bad _lock doesn’t work?

—EE void

LOAD (%srd1i),%eax bad_lock(volatile uint32_t *lock) {
$0x1, %eax thread might get while (*lock == 1);

0x400b60 <bad_lock> Wiy *lock = 1:

$0x1, (%rdi) '

STORE

54

Why does bad _lock doesn’t work?

* There is a room for race condition!

) d') VOid

LOAP $;;11o)é§iax bad_lock(volatile uint32_t *lock) {
7© thread might get hile (*lock == 1);

0x400b60 <bad_lock> FN glgcﬁ i 1<_>c)

$0x1, (%rdi) ’

STORE

55

Why does bad _lock doesn’t work?

* There is a room for race condition!

void
bad lock(volatile uint32_t *lock) {
while (*lock == 1);

LOAD Jul\% (%rdi) ,%eax

je 0x400b60 <bad,Lack>
sTORE H)at $0x1, (%rdi) Bb

*lock = 1;

56

Why does bad _lock doesn’t work?

* There is a room for race condition!

void
bad lock(volatile uint32_t *lock) {
while (*lock == 1);

LOAD Jul\% (%rdi) ,%eax

je 0x400b60 <bad,Lack>
sTORE H)at $0x1, (%rdi) Bb

*lock = 1;

57

Recall: Why does this work for humans?

e Human can perform (look for other person
& milk) and (leave note) at the same time.

Atomic Test and Set

* We need a way to test
e if lock ==

* And we would like to set
* lock=1

* And do this atomically

* Hardware support is required
* xchg in x86 does this
* An atomic test-and-set operation

%rdi) ,%eax
$0x1, %eax

0x400b60 <bad lock>
$0x1, (%rdi)

Not like these four
instructions...

59

xchg: Atomic Value Exchange in x86

*xchg [memory], %reg
* Exchange the content in [memory] with thevaluein $reg atomically

emov S$1, %eax
* xchg Slock, %eax

* This will set $eax asthevaluein lock
e Seax willbe 0if Lock==0, willbel if lock==

* At the same time, this will set 1lock = 1 (thevalue wasin %$eax)

* CPU applies ‘lock’ at hardware level (cache/memory) to do this
* Hardware guarantees no data race when running xchg

60

xchg: Atomic Value Exchange in x86

*xchg [memory], %reg
* Exchange the content in [memory] with thevaluein $reg atomically

emov S$1, %eax
o Xchg Slock , %eax Swap lock and eax atomically

* This will set $eax asthevaluein lock
e Seax willbe 0if Lock==0, willbel if lock==

* At the same time, this will set 1lock = 1 (thevalue wasin %$eax)

* CPU applies ‘lock’ at hardware level (cache/memory) to do this
* Hardware guarantees no data race when running xchg

61

xchg: Atomic Value Exchange in x86

*mov $1, %eax
* xchg S$lock, %eax Swap lockand eax atomically

* This will set $eax asthevaluein lock
e Seax Willbe 0if lock==0, willbel if lock==

* How can we determine if a thread acquired the lock?

eifeax == 0
e This means the 1ock was 0, and after running xchg, lock will be 1 (eax was 1)
* We acquired the lock!!! (Lock was 0 and now the 1ock is 1)

cifeax == 1
* This means the 1ock was 1, and after running xchg, 1ock will be 1
* We did not acquired the lock (it was 1)
* lock == 1 meanssome other thread acquired this...

62

Lock using xchg

void *
count_xchg lock(void *args) {
e xche lock for (int i=0; i < N _COUNT; ++i) {
&_ . , . . xchg lock(&lock);
» Use atomic ‘xchg’ instruction to sched yield();
* Load and store values atomically count += 1;
* Set value to 1, and compare ret xchg_unlock(&lock) ;

* If 0, then you can acquire the lock
* If 1, lock as 1, you must wait

*xchg_unlock

void
* Use atomic xchg’ xchg lock(volatile uint32_t *lock) {
* Set valueto 0 while(xchg(lock, 1));
* Do not need to check ¥
* You are the only thread that runs in the X
* Critical section.. void . .
xchg _unlock(volatile uint32_t *lock) {

xchg(lock, 0);

}

Lock using xchg

void *
count_xchg lock(void *args) {
e xche lock for (int i=0; i < N _COUNT; ++i) {
. 5—' ic ‘sche’ i . «chg_lock(&lock);
se atomic ‘xchg mstructlo.n to sched_yield();
* Load and store values atomically ~ount += 1;
* Set value to 1, and compare ret «chg_unlock(&lock) ;

* If 0, then you can acquire the lock
* If 1, lock as 1, you must wait

*xchg_unlock

void
* Use atomic xchg’ xchg lock(volatile uint32_t *lock) {
* Set valueto 0 while(xchg(lock, 1));
* Do not need to check ¥
* You are the only thread that runs in the X
* Critical section.. void . .
xchg _unlock(volatile uint32_t *lock) {

xchg(lock, 0);

}

Does xchg_lock works?

*Yes!|

Running 30 threads each countii 0 50 usinc hg lock

Result:1500, Time ta

® Anyissues?

65

Issues with xchg_lock

* xchg will always update the value
* If lock ==
* lock=1
* eax=0
e Iflock==1
* lock=1
* eax=1
* We use while() to check the value in lock
* Will be cached into L1 cache of the CPU

* After updating a value in cache

* We need to invalidate the cache in other CPUs...

66

Issues with xchg_lock

* xchg will always update the value
* If lock ==

* lock=1
* eax=0

e Iflock==1

* lock=1]
e eax=1 Swap with eax == 1, update lock to 1

Swap with eax == 1, update lock to 1

* We use while() to check the value in lock
* Will be cached into L1 cache of the CPU

* After updating a value in cache

* We need to invalidate the cache in other CPUs...

67

No need to write when lock ==

e Let’s not do that
e xchg can’t do that

68

No need to write when lock ==

e Let’s not do that
e xchg can’t do that

* New method: Test and test-and-set
* Check the value first (if lock ==0) [J TEST
o Ifitis,
* Do test-and-set
* Otherwise (if lock == 1),
* Do nothing
* DO NOT UPDATE lock if lock == 1 (No cache invalidate)

69

Lock using test and set

void *
count_tts xchg lock(void *args) {
* tts_xchg_lock for (int i=0; i < N_COUNT; ++i) {
. tts_xchg_lock(&lock);
* Algorithm sched_yield();
* Wait until lock becomes 0 count += 1;
e After lock == xchg_unlock(&lock) ;
* xchg (lock, 1)

* This only updates lock = 1 if lock was 0

void

o * - : tts xchg lock(volatile uint32_t *lock) {
Why xchg, why not *lock = 1 directl whils (1) {

* while and xchg are not atomic while(*lock == 1);

* Load/Store must happen at if xcha(lock, 1) == 0) {
. break;
* The same time!

Lock using test and set

void *
count_tts xchg lock(void *args) {
* tts_xchg_lock for (int i=0; i < N_COUNT; ++i) {
. tts _xchg_lock(&lock);
* Algorithm sched_yield();
* Wait until lock becomes 0 ~ount += 1;
e After lock == xchg_unlock(&lock) ;

* xchg (lock, 1)
* This only updates lock = 1 if lock was 0

void
* Why xchg, why not *lock = 1 tts—xﬁ'i‘%gl?i')‘(‘{’°1a“le UtnEaZ £ *lock) {
* while and xchg are not atomic while(*lock == 1);
* Load/Store must happen at if (gﬁZE&}ock, 1) ==0) {

* The same time!

Test and Set in x86

*cmpxchg [update-value], [memory]
» Compare the value in [memory] with $eax Test
* If matched, exchange value in [memory] with [update-value] 'estand-set
* Otherwise, do not perform exchange

* cmpxchg(lock, 0, 1)
* Arguments: Lock, test value, update value
* Returns old value of lock

72

Lock using cmpxchg_lock

void *
count_cmpxchg lock(void *args)
* Cmpxchg_lock for (int i=0; i < N_COUNT;
cmpxchg lock(&lock) ;
* Use cmpxchg to set lock = 1 sched yield();

* Do not update if lock==1 count += 1;
xchg _unlock(&lock) ;

* Only write 1 to lock if lock ==

e Xchg_unlock void _ _
- cmpxchg_lock(volatile uint32_t *lock) {

* Use xchg_unlock to set lock =0 while(cmpxchg(lock, 0, 1));
* Because we have 1 writer and }

* This always succeeds... void
xchg _unlock(volatile uint32_t *lock) {

xchg(lock, 0);
}

Lock using cmpxchg_lock

void *
count_cmpxchg lock(void *args)
* Cmpxchg_lock for (int i=0; i < N_COUNT;
cmpxchg lock(&lock) ;
* Use cmpxchg to set lock = 1 sched yield();

* Do not update if lock==1 count += 1;
xchg _unlock(&lock) ;

* Only write 1 to lock if lock ==

e Xchg_unlock void _ _
- cmpxchg_lock(volatile uint32_t *lock) {

* Use xchg_unlock to set lock =0 while(cmpxchg(lock, 0, 1));
* Because we have 1 writer and }

* This always succeeds... void
xchg _unlock(volatile uint32_t *lock) {

xchg(lock, 0);
}

' X X
Y X X
: : : : ecs”
Reading fine print : x86 is too COMPLEX! 3
This [cmpxchg]instruction can be used with a LOCK prefix to allow the instruction to be executed atomically|

thegdestination operand receives a write cycle without regard to the result of the
he destination operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also producing a locked write.)

Cmpxchg designed to be Test and Test & Set instruction

However, Intel CPU gets too complex, so they decided to always update value regardless the result of
comparision

75

tts xchg_lock v/is cmpxchg_lock

e tts_xchg_lock is faster then cmpxchg_lock

76

Not everything in hardware is fast!

Observation 2: AddressSanitizer, despite being a software-only approach, performs on par with ICC-MPX and better than GCC-MPX. This

unexpected result testifies that thefHW-assisted performance improvements of MPX are offset by its complicated designflAt the same time,

77

Using hardware features smartly

* backoff cmpxchg lock(lock)

* Try cmpxchg —
* If succeeded, acquire the lock. backoff_cmpxchg lock(volatile uint32_ t *lock) {
e |f failed uint32_t backoff = 1;
. . . while(cmpxchg(lock, 0, 1)) {
Wa!tlcycle (pauseg fgr 1% trial for (int i=0; i<backoff; ++i) {
* Wait 2 cycles for 2"° trial __asm volatile("pause");
* Wait 4 cycles for 3 trial }

. if (backoff < 0x10000) {

Wait 65536 cycles for 17" trial.. backoff <<= 1;
Wait 65536 cycles for 18" trial..

* https://en.wikipedia.org/wiki/Exponential _backoff

78

https://en.wikipedia.org/wiki/Exponential_backoff

Summary

e Waits until lock ==
Naive code implementation

xchg is a “test and set” ato
* Consistent, however, many

[)
—
@)
(@]
Q
o
3
ke
X
o
>
‘Ga
n
]
f—i'
(D
0w
—t
W
S
Q.
el
=
_)

e Faster!

* We can also implement expd
* Much faster! Faster Than p{

Mutex is implemented with Spinlock
0 with a while loop (that’s why it’s called spin)

30 threads each counting to 50 usi no lock

:1400, Time taken:
k bad

30 threads each counting to 50 using bad lock
55, Time taken:

30 threads each count to 50 using xchg lock

1

eads each Llock

Time tak

cmpxchg
tts lock
’./19UUU ms

inn to 5A ysing backoff lock

DO ms

threads _each countina to 50 using mutex lock
Time taken: 5.3 €

Other synchronization primitives

* We may want to have more than one thread/process to execute at
same time

Producer Consumer

while (1) { While (1) {

produce an item; lock();
remove(item from pool);

lock(); unlock();
insert(item to pool);
unlock(); consume the item;

} }

80

How many producers/consumers can run at

a given time?

Producer
while (1) {

produce an item;

lock();

insert(item to pool);

unlock();

Consumer
While (1) {

lock();
remove(item from pool);

unlock();

consume the item;

81

What we want!

* To be more efficient we want to be able to allow more than one
producer/consumer, i.e., equal to the number of items that can be
inserted into/removed from the pool

Producer Consumer
while (1) { While (1) {
produce an item; lock();
remove(item from pool);
lock(); unlock();

insert(item to pool);
unlock(); consume the item;

82

Semaphore

A semaphore is like an integer, with three differences:

When you create the semaphore, you can initialize its value to any integer, but after
that the only operations you are allowed to perform are increment (increase by
one) and decrement (decrease by one). You cannot read the current value of the
semaphore.

When a thread decrements the semaphore, if the result is negative, the thread
blocks itself and cannot continue until another thread increments the semaphore.

When a thread increments the semaphore, if there are other threads waiting, one

of the waiting threads gets unblocked. o

Semaphore operations

wait(S) { signal (S) {
while (S<=0); S++;
S--; }

}

84

Producers/consumers using Semaphores

Producer
while (1) {

produce an item;

lock();

insert(item to pool);

unlock();

}

Consumer
While (1) {

lock();
remove(item from pool);

unlock();

consume the item;

Init: FULL = 0; EMPTY = N;

85

Producers/consumers using Semaphores

Producer
while (1) {

produce an item;

lock();

insert(item to pool);

unlock();
signal(FULL);

Consumer
While (1) {

lock();
remove(item from pool);

unlock();

consume the item;

Init: FULL = 0; EMPTY = N;

86

Producers/consumers using Semaphores

Producer
while (1) {
produce an item;

wait(EMPTY);
lock();

insert(item to pool);

unlock();
signal(FULL);

Consumer
While (1) {

lock();
remove(item from pool);

unlock();

consume the item;

Init: FULL = 0; EMPTY = N;

87

Producers/consumers using Semaphores

Producer
while (1) {
produce an item;

wait(EMPTY);
lock();

insert(item to pool);

unlock();
signal(FULL);

Consumer
While (1) {

wait(FULL);

lock();

remove(item from pool);
unlock();

consume the item;

}

Init: FULL = 0; EMPTY = N;

88

Producers/consumers using Semaphores

Producer
while (1) {
produce an item;

wait(EMPTY);
lock();

insert(item to pool);

unlock();
signal(FULL);

Consumer
While (1) {

wait(FULL);

lock();

remove(item from pool);
unlock();
signal(EMPTY);
consume the item;

}

Init: FULL = 0; EMPTY = N;

89

Is Semaphore good for producers/consumers?

Need to know the size of buffer!

How to accommodate dynamic pool size?

90

